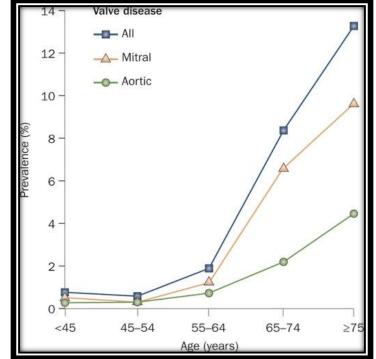
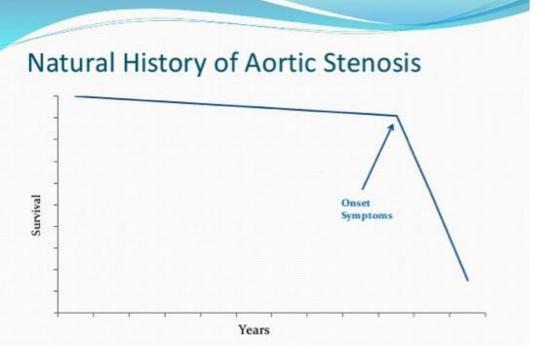
Valvular Heart Disease & Hypertension

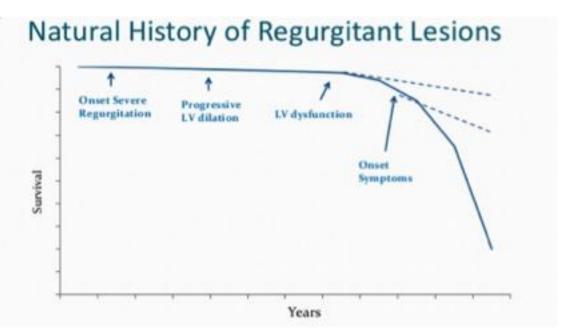
Management tips for the Primary Care Dr. Peter Ting

Snr Consultant Cardiologist




Often unheard but not uncommon condition

- Prevalence in U.S of moderate or greater VHD is ~2.5%, MR > AR > AR > MS
- Prevalence increases with age, in 65-74, 4-8%, in >75, ~12%.


» (Circ 2015;131:e29-322)

- Prevalence in Singapore?
 Unknown
 - ~ 1 in 10 by 75?

Often asymptomatic until late stages -Exertional dyspnea, palpitations and chest pain

Adapted Mayo Clinic Concise Textbook 2013

When to suspect VHD?

- Often just an incidental murmur
- *Physical exam* can be quite specific for AS/AR but is *often insensitive*
- Just as often no or subtle murmur
- ECG and CXR signs are usually late
 - ECG LVH, RVH, LA/RA enlargement
 - CXR cardiomegaly, valvular calcification, pulmonary vasculature

New murmur? Pathologic versus benign

• **Sound** - Auscultatory findings:

- Loud (Grade 3 or more)
- Long in duration (mid or late peaking or holosystolic)
- Prominent radiation to axilla or neck
- Change intensity during physiologic maneuvers (Valsalva, squatting)
- A/w diastolic murmur
- Abnormal heart sounds (Loud S1, wide fixed or paradoxical split S2, loud A2, or P2 or S4 or S3 gallops, midsystolic click, aortic or pulmonic ejection sounds, opening snap, pericardial knock

• Other -

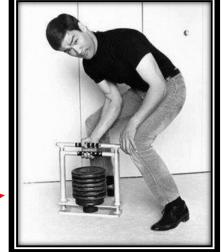
Abnormal JVP, elevated mean venous pressure, Large A or V waves

• Pulse - Abnormal arterial pulse / blood pressure

- Wide pulse pressure
- Pulsus alternans
- Pulsus paradoxus
- Brisk rapid rising pulse
- Small weak or slow-rising pulse
- Cardiac arrhythmias (AF)
- Apex Abnormal precordial movements
 - Sustained LV apical or RV parasternal lift or heave (hypertrophy)
 - Diffuse, infero-laterally displaced impulses (LV enlargement)
 - Bifid LV apical impulse

Echo most important assessment

- For initial evaluation of known or suspected VHD
 - For diagnosis, etiology, severity, prognosis, and evaluate timing of intervention
- Known VHD with change in symptoms or P/E findings
- Routine FU of known VHD


Stage	Aortic	Aortic	Mitral	Mitral
	Stenosis	Regurgitation	Stenosis	Regurgitation
Progressive	Mild	Mild	Mild	Mild
(B)	Every 3-5 years	Every 3-5 years	Every 3-5 years	Every 3-5 year
	Moderate	Moderate	Moderate	Moderate
	Every 1-2 years	Every 1-2 years	Every 1-2 years	Every 1-2 years
Severe (C)	Severe Every 6-12 mo	Severe Every 6-12 mo Dilating LV: more frequently	Severe Every year	Severe Every 6-12 mo Dilating LV: more frequently

Exercise for VHD patient

- Exercise is good.....but is it safe?
- Regular aerobic exercise is recommended to maintain cardiorespiratory fitness
- Heavy isometric training will increase afterload of LV and is discouraged

How to classify sports

t III. High (>50% MVC)	Bobsledding/Luge*†, Field events (throwing), Gymnastics*†, Martial arts*, Sailing, Sport climbing, Water skiing*†, Weight lifting*†, Windsurfing*†	Body building*†, Downhill skiing*†, Skateboarding*†, Snowboarding*†, Wrestling*	Boxing*, Canoeing/Kayaking, Cycling*†, Decathlon, Rowing, Speed-skating*†, Triathlon*†
tic Component II. Moderate 20-50% MVC)	Archery, Auto racing*†, Diving*†, Equestrian*†, Motorcycling*†	American football*, Field events (jumping), Figure skating*, Rodeoing*†, Rugby*, Running (sprint), Surfing*†, Synchronized swimming†	Basketball*, Ice hockey*, Cross-country skiing (skating technique), Lacrosse*, Running (middle distance), Swimming, Team handball
Increasing Static I. Low II. (<20% MVC) (20	Billiards, Bowling, Cricket, Curling, Golf, Riflery	Baseball/Softball*, Fencing, Table tennis, Volleyball	Badminton, Cross-country skiing (classic technique), Field hockey*, Orienteering, Race walking, Racquetball/Squash, Running (long distance), Soccer*, Tennis

A. Low (<40% Max O₂) B. Moderate (40-70% Max O₂) C. High (>70% Max O₂)

Increasing Dynamic Component •

Sports with AR/MR

- In general, exercise causes no change or slight reduction in regurgitant fraction (decrease SVR)
- Generally more tolerant of physical activity
- BUT, elevated HR or BP and cause increased regurgitation

Patient group	Recommendation
Mild to moderate AR with normal LV size	No restrictions
Mild to moderate AR with moderate LV enlargement	Low/moderate static and low/moderate/high dynamic sports *if tested
Severe AR	No competitive sports
Dilated aortic root (> 4.5 cm)	IA sports only
	. ,
Dilated aortic root (> 4.5 cm) Patient group	IA sports only Recommendation
	. ,
Patient group	Recommendation

AR

MR

Competitive Sports with MS

- Exercise may increase pulmonary capillary and pulmonary artery systolic pressure which may result in acute pulmonary edema
- AS patients in competitive sports need annual evaluation

Patient group	Recommendation
Mild AS	No restrictions
Moderate AS	IA sports IB and IIA sports in selected patients
Severe AS	No competitive sports

AS

MS

Patient group	Recommendation
Mild MS (with exercise PASP < 50 mm Hg)	No restrictions
Moderate MS (and PASP < 50 mm Hg)	Low/moderate static and low/moderate dynamic sports
Severe MS (or any with exercise PASP > 50 nm Hg)	No competitive sports

Sports with Bicuspid Aortic Valve/ Prosthetic valves

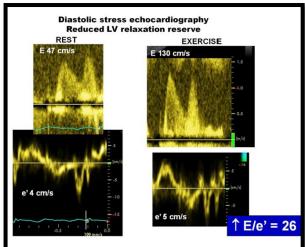
• BiAOV there is increased risk of aortic

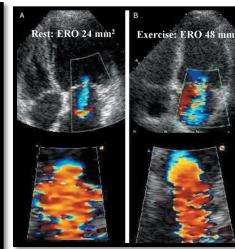
Patient group	Recommendation
No significant AS/AR and aortic root < 4.0 cm	No restrictions
Aortic root 4.0-4.5 cm	Low/moderate static and low/moderate dynamic sports *Avoid collision sports
Dilated aortic root (> 4.5 cm)	IA sports only

Insufficient long term data on exercise effects

Patient group	Recommendation
Bioprosthetic mitral valve	Low/moderate static and low/moderate dynamic sports
Bioprosthetic or mechanical aortic valve	Low/moderate static and low/moderate dynamic sports *if tested

In general when advising exercise, you need to know...


- 1) Valves involved & abnormality (stenosis or regurgitation) and etiology
- 2) Severity of the valvular lesion based on echocardiographic and clinical features
- 3) Presence of **adverse secondary features** such as left ventricular systolic dysfunction, chamber dilatation, exercise induced pulmonary hypertension on echo, or exercise induced hypotension or syncope
- 4) Evidence of concurrent **significant arrhythmias**
- 5) **Presence of symptoms**, in particular dyspnea, syncope, palpations or angina



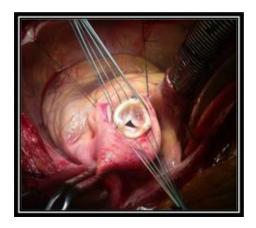
Exercise testing in VHD – Stress echo/CPET

- Assessing presence of symptoms
- Functional status, suitability for participation in competitive sports
- Assess dynamic nature of VHD (severity)
- Help determine timing for surgery

Aortic stenosis Rx

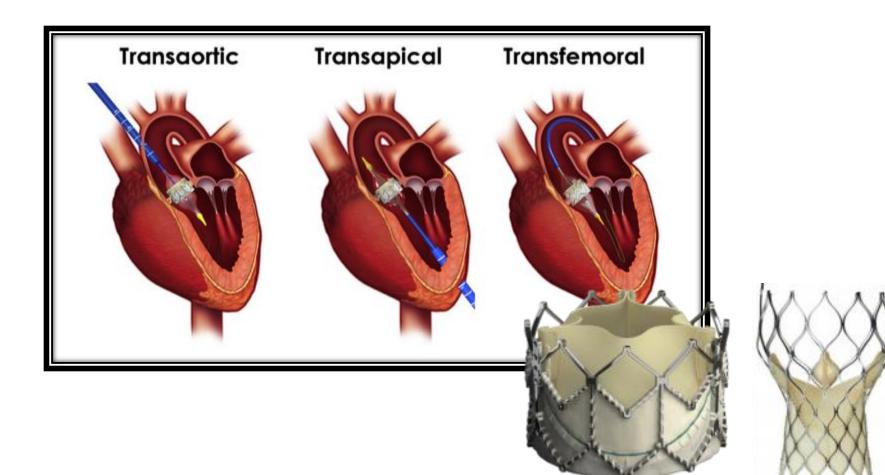
Medical:

- Class I
 - Treat hypertension as per normal
 - No specific antihypt, but start with low dose and titrate upwards (risk of hypotension, beware of sudden BP drops)
 - If HF present ACE/ARB, B blockers preferred
- Class III
 - Statin Rx Not indicated for Rx AS progression!


C.		Active		Placebo				
Trials	n	Mean AS Gradient (SD)	n	Mean AS Gradient (SD)	SMD (95% CI)		1	
TASS	19	31.3 (12.3)	16	29.9 (14.8)	0.10 (-0.56, 0.77)		· ·	-
SEAS	859	34.0 (15.1)	834	34.4 (14.9)	-0.03 (-0.12, 0.07)			
ASTRONOMER	86	32.2 (13.1)	78	31.0 (12.1)	0.09 (-0.21, 0.40)			_
Overall	964		928		-0.01 (-0.10, 0.08)		\Diamond	
P-value fo								

AVR for AS

Severe AS +


- Symptomatic (HF, syncope, SOBOE, angina, presyncope)
- Asymptomatic but LVEF < 50% or undergoing other cardiac surgery

TAVR for AS

Currently indicated in elderly high risk cases on non operable AS (usually old and frail). Promising data on intermediate risk group as well. Longer term durability > 5years not known

Aortic Regurgitation

Class I: Medical Therapy

- Treat hypertension
- DHP CCBs and ACE/ARB are preferred
- 2 RCTs have not conclusively shown benefit for vasodilators
- Retrospective studies show reduction in combined AVR/hospitalization for HF/death with ACE/ARB and improved survival with beta blockers
- Class I: Surgery AVR for AR
 - Symptomatic severe AR
 - Asymptomatic severe AR LVEF<50%
 - Severe AR undergoing other cardiac surgery
 - Asymptomatic severe AR showing LV dilatation

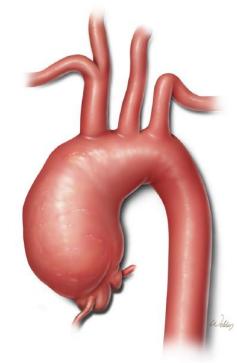
Biscupid Aortic Valves

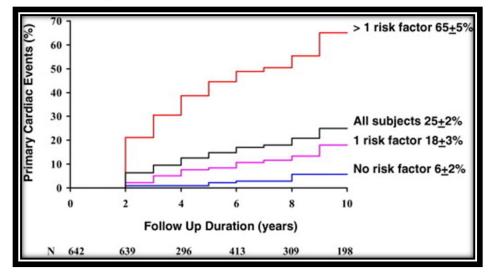
- Most common congenital Heart defect
- 0.5-2% prevalence
- Male:Female 3:1
- May co-exist with coarcation
 - 50-75% of coarctation patients have bicuspid valves
- Also a/w Williams syndrome (supravalvular stenosis), Shone's syndrome (multiple left sided lesions of inflow and outflow) and Turner syndrome (with coarctation)

FIGURE 1

Normal Aortic Valve (3 leaflets)

Bicuspid Aortic Valve (2 leaflets)




Surgically removed Bicuspid Aortic Valve

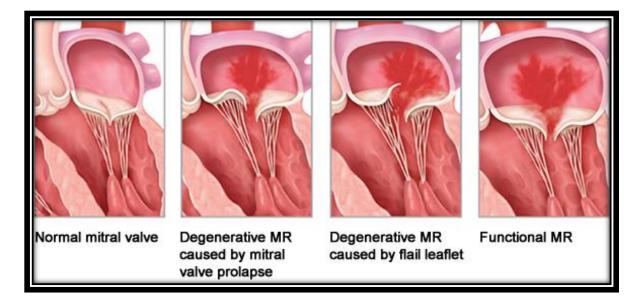
Biscupid Aortic Valves

- Bicuspid aortic valves associated with aortopathy (aortic dilation, coarctation, dissection)
- 20-30% BiAOV have family members with bicuspid valve disease and/or aortopathy
 - Screening of 1st degree relatives generally recommended

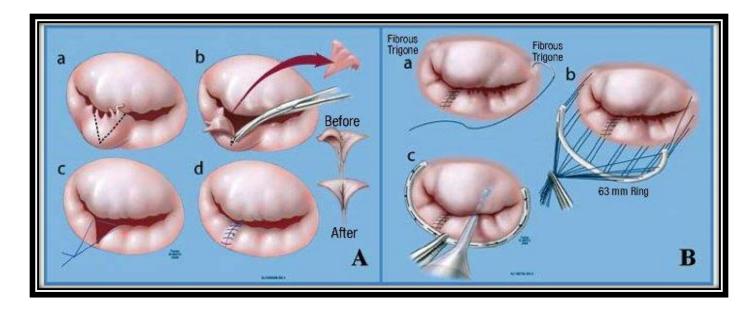
Outcomes of BIAOV

Risk factors: Age>30, presence of mod/sev AR or AS

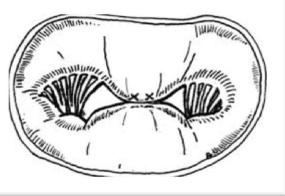
Bicuspid Aortic Valve management


No need antibiotic prophylaxis for IE

- Ensure hypertension is well managed
 - Beta blocker and ARB useful with Marfan's to *slow aortopathy progression*
 - Possibly helpful in other groups as well
- Routine echo and/or other imaging

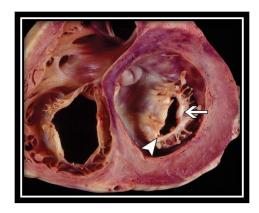

Chronic Mitral Regurgitation

- Primary (degenerative) MR
 - Related to pathology of the valves (leaflet, chordae, papillary muscles, annulus)
 - Most common is MVP
- Secondary (functional) MR
 - Valve is normal but LV dilatation causes papillary muscle displacement and leaflet tethering (prevents coaptation)


When to operate for MR

- Repair is preferred over replacement
 - Leads to better outcomes, heart function and less complications
- Symptomatic severe primary MR (EF>30%)
- Asymptomatic severe primary MR, EF<60% and or LVESD >40mm
- Severe MR undergoing other cardiac surgery

Mitraclip system


Alfieri Stitch

Percutaneous reduction of sig. symptomatic MR in patients at prohibitive high risk For MV surgery by hear team, who are expected to have a reasonable life expectancy

Symptomatic relief and improvement of NYHA class, positive remodeling, but to date no Mortality benefit

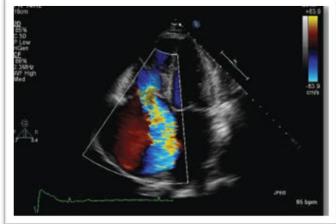
Mitral Stenosis

- Suspect if childhood history of rheumatic fever
- Medical therapy
 - Warfarin for MS and Afib, embolic event or LA thrombus (class I)
 - Heart rate control with Afib and RVR (Class IIa)
 - Heart rate control for MS without AF (Class IIb)



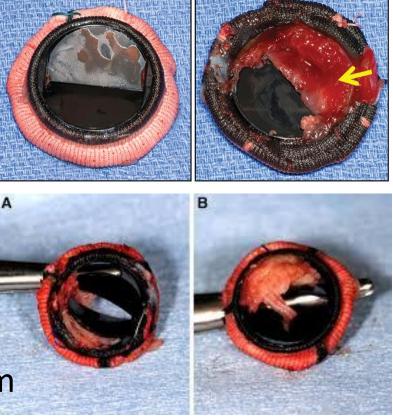
MS intervention

- Percutaneous mitral balloon Commissurotomy (PTMC) recommended for severe MS with symptoms and favorable anatomy
- Surgery for symptomatic severe MS (not candidate or failed previous PMBC)
- Severe MS undergoing other cardiac surgery



Tricuspid Regurgitation

- The forgotten valve
- Primary (degnerative) TR
 RHD, prolapse, Ebsetin's , IE , carcinoid
- Secondary (functional) TR
 - Related to annular dilatation and leaflet tethering from RV remodeling
 - 80% of cases
- Often clinically silent



TR management

- Class IIA
 - Diuretics (loop and aldosterone antagonists) useful for severe TR with signs of RH failure
- Class IIB
 - Medical therapies to reduce PASP
- Class I
 - Sugery for severe TR for patients undergoing left sided valve surgery
- Sugery is still tricuspid repair/annuloplasty or replacement
- Percutaneous techniques are in development

Problem with prosthetic valves

- Bioprosthetic
 - Scan annually after 10 years
- Prosthetic valve dysfunction:
 - Degeneration (bioprosthetic)
 - Pannus
 - Thrombus
 - Paravalvular leaks / dehiscence
 - Infective endocarditis
- Re-echo if suspicion of problem

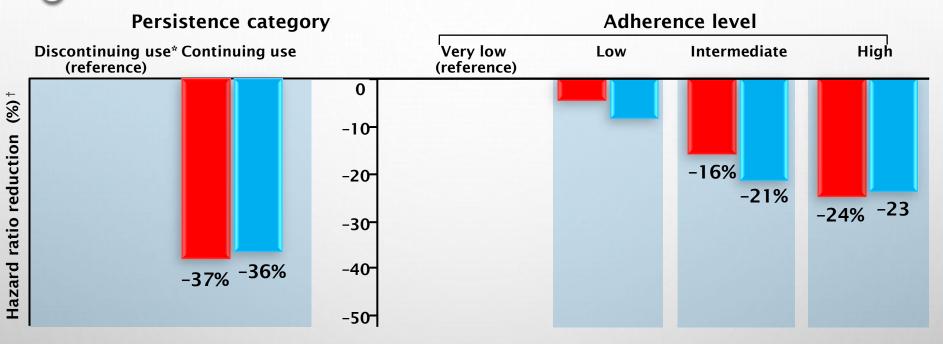
Anticoagulation Guidelines

Patients	Goal INR	m	
Mechanical AVR (no risk factors for thromboembolism)	2.0-3.0	Ŵ	13
Mechanical AVR with risk factors*	2.5- 3.5		
Mechanical MVR	2.5-3.5	O	and the
All patients with mechanical valve	ASA 75-100 mg	6	A.
Provided low bleeding ri	sk		1
*AF, prior thromboembolism, LV dysfunction	on, hypercoagulable		A

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease

HOW ABOUT HYPERTENSION

DOSING STRATEGIES TO IMPROVE CONTROL


MONITORING STRATEGIES TO IMPROVE CONTROL

DBP TARGETING STRATEGIES TO IMPROVE OUTCOME

Effect of compliance with antihypertensive medications

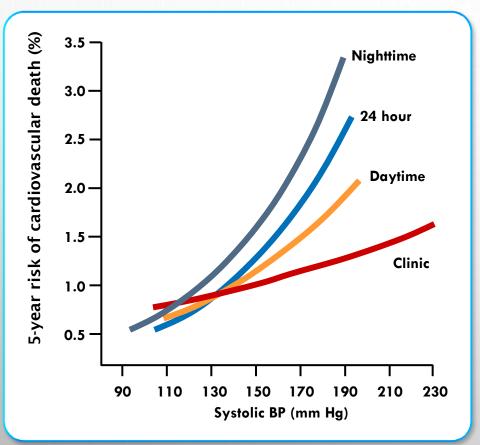
on the risk of cardiovascular outcomes

[†]Estimates are adjusted for gender, age, initial antihypertensive regimen, number of different classes of antihypertensive medications dispensed during follow-up, use of other drugs during follow-up, and categories of Charlson comorbidity index score. * At least 1 episode of no prescription coverage for > 90 days.

Taking drug for the duration of therapy

Coronary events Coronary events

Conforming to the prescription


Corrao et al. J Hypertens. 2011;29:610-618.

COMPLIANCE WITH TREATMENT INCREASES ON FIXED-DOSE COMBINATION THERAPY

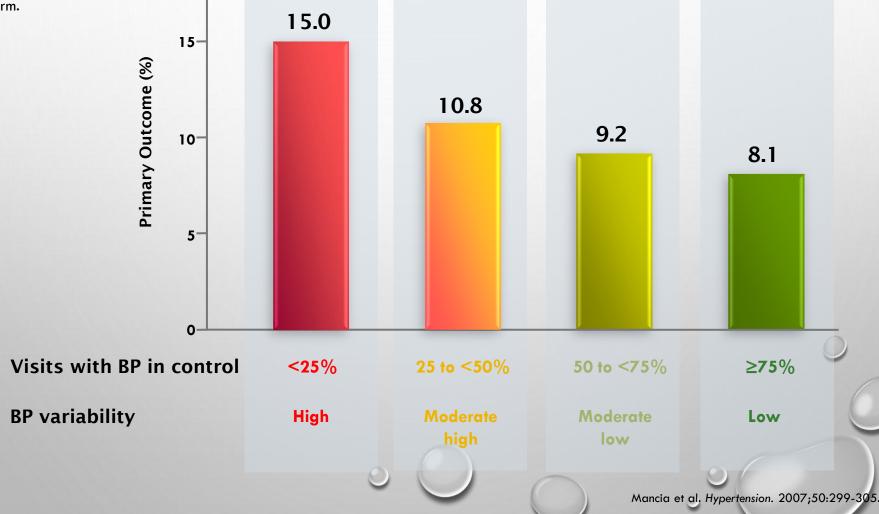
Trials	OR (95%CI)
Schweizer et al, 2007	1.08 (0.75 - 1.54)
Asplund et al, 1984	1.74 (0.96 - 3.15)
Subtotal (I-squared=45.6%, <i>P</i> =0.175)	1.22 (0.90 - 1.66)
Cohort Studies	
Taylor et al, 2003 —	1.09 (0.80 - 1.51)
Gerbino et al, 2004	1.28 (0.93 - 1.75)
Dickson et al, 2008	1.29 (0.89 - 1.89)
Subtotal (I-squared=0.0%, <i>P</i> =0.740)	1.21 (1.00 - 1.47)
Heterogeneity among groups: <i>P</i> =0.9 Total (I-squared=0.0%, <i>P</i> =0.655)	1.21 (1.03 - 1.43)
0.5 1.0 Free combinations better -	→ Fixed-dose combinations better
Meta-analysis 18,000 paxs, compliance	21% higher
	Gupta et al. Hypertension. 2010;55:39

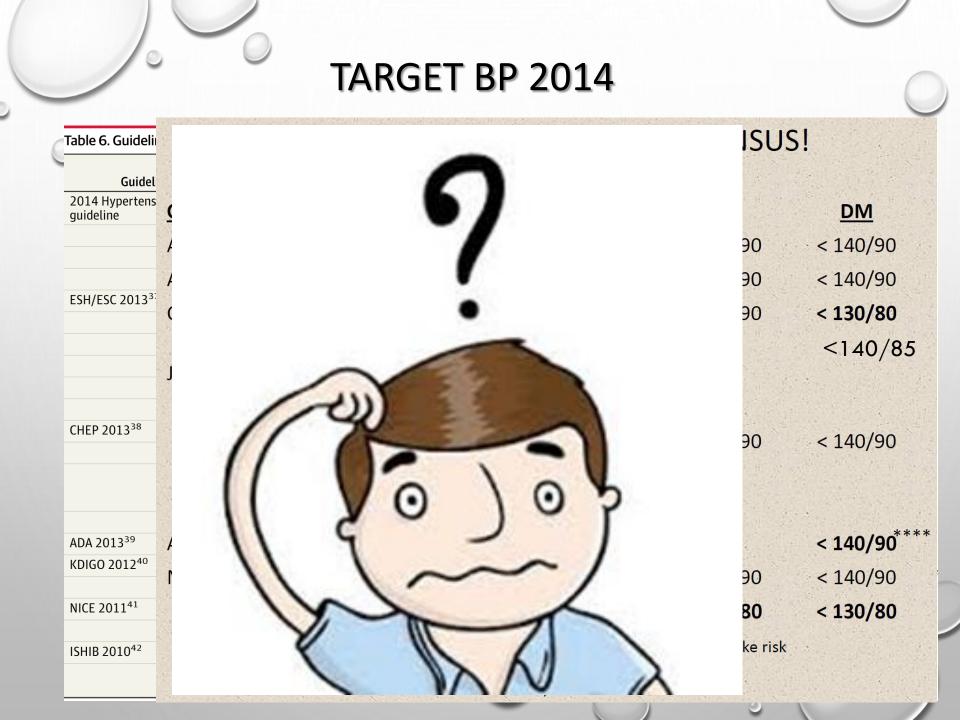
Gupta et al. Hypertension. 2010;55:399-407.

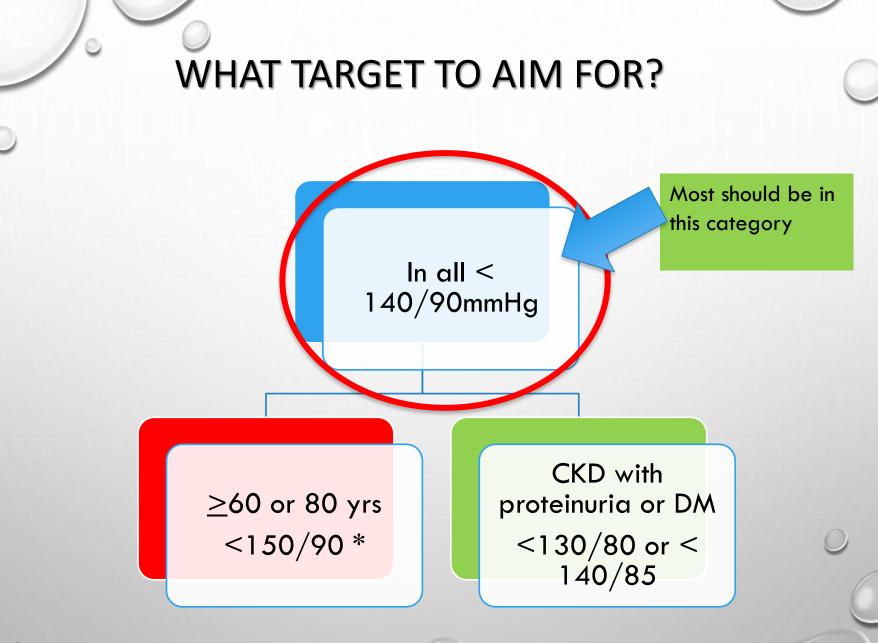
AMBULATORY BLOOD PRESSURE PREDICTS MORTALITY OVER AND BEYOND CLINIC BLOOD PRESSURE

Adjusted 5-year risk of cardiovascular death in the study cohort of 5292 patients for clinic blood pressure monitoring and ambulatory blood pressure monitoring

The relative risk was calculated with adjustment for baseline characteristics including sex, age, presence of diabetes mellitus, history of cardiovascular events, and smoking status


The 5-year risks are expressed as number of deaths per 100 subjects


Dublin outcome study


MORE CONSISTENT BLOOD PRESSURE CONTROL (LESS BLOOD PRESSURE VARIABILITY), BETTER OUTCOME

suggesting that the protective effec**20**f antihypertensive treatment depends not only on the magnitude of mean blood pressure reduction, but also on the consistency of on-treatment blood pressure control in the long term.

Trend: P<0.001

* Unless tolerating already or if physically fit

The NEW ENGLAND JOURNAL of MEDICINE

Examine effect of more intensive high blood pressure treatment than is currently recommended

Intensive Treatment Goal SBP < 120 mm Hg Standard Treatment Goal SBP < 140 mm Hg

SPRINT trial NEJM 2015

SPRINT design details available at:

- ClinicalTrials.gov (NCT01206062)
- Ambrosius WT et al. Clin. Trials. 2014;11:532-546.

SPRINT SUMMARY AND CONCLUSIONS

- EXAMINED EFFECTS OF MORE INTENSIVE ANTIHYPERTENSIVE THERAPY (SBP<120MMHG)
- ADULTS ≥50 YEARS WITH HYPERTENSION AND ADDITIONAL RISK FOR CVD
- TRIAL STOPPED EARLY, DUE TO BENEFIT, MEDIAN FOLLOW-UP OF 3.26 YEARS
- PRIMARY OUTCOME (COMPOSITE OF CVD EVENTS) 25% LOWER IN INTENSIVE COMPARED TO STANDARD GROUP AND ALL-CAUSE MORTALITY REDUCED BY 27%.
- "NUMBER NEEDED TO TREAT" TO PREVENT PRIMARY OUTCOME EVENT OR DEATH 61 AND 90, RESPECTIVELY

HYPERTENSION STRATEGIES

DOSING STRATEGY

SIMPLIFYING DOSING REGIME IMPROVES COMPLIANCE & OUTCOME

FIXED DOSE COMBINATIONS

□ MINIMIZE PILL COUNT, ALLOWS LOWER DOSES, BETTER ADHERENCE

MONITORING STRATEGY

USEFUL PARAMETERS – 24HR ABP >> HBP >> OBPM

BENEFITS BEYOND MEAN BP LOWERING

CONSIDER NOCTURNAL HYPERTENSION, MORNING SURGES, BP VARIABILITY, CENTRAL AORTIC PRESSURE

TARGETING STRATEGY

□ IS LOWER BETTER? \rightarrow SPRINT

□ YES! SBP 120, SAFE IN ELDERLY, ADVERSE EVENTS ARE A REAL PROBLEM

TARGET DEPENDS ON

INDIVIDUAL CV RISK LEVEL, TOLERABILITY LEVEL, TARGET IN DIABETES LESS WELL ESTABLISHED
THE HARIEV STR

THE HARLEY STREET

Gleneagles Hospital, #02-38/41, Annexe Block 6A Napier Road, Singapore T +65 6472 3703

Email: reginald.liew@harleystreet.sg www.harleystreet.sg Mount Elizabeth Novena Specialist Centre #07-41, 38 Irrawaddy Road, Singapore T +65 6694 0050